

PII: S0040-4039(96)01047-7

Ruthenium Tetroxide Oxidation of 3β-Acetoxy-28-hydroxy-18-lupene to Tricyclic Products

Mikhail V. Denisenko*, Natal'ya D. Pokhilo, Larisa E. Odinokova, Vladimir A. Denisenko, and Nina I. Uvarova

Pacific Institute of Bioorganic Chemistry, Far East Division of the Russian Academy of Sciences, 690022, Vladivostok-22, Russia, Fax: 7(4232)314050

Abstract: By gradual addition 3β -acetoxy-28-hydroxy-18-lupene with stirring at $\sim 50^{\circ}\text{C}$ EtOAc-H₂O biphase system, containing F₃CCOOH and RuO₄, regenerated *in situ* from RuO₂·xH₂O and NaIO₄, satisfactory yields of 3β -acetoxy-28-nor-17,18;18,19-disecolupan-17,19-dion-18-oic acid and 3β -acetoxy-19,20,21,22,28,29,30-heptanor-17,18-secolupan-17,18-dioic acid were obtained. Copyright © 1996 Elsevier Science Ltd

E. Suokas and T. Hase developed a simple and effective conversion of betulin diacetate to 3β,28-diacetoxy-18-lupene, by action of a HBr-Ac₂O-AcOH mix in dry benzene. Ruthenium tetroxide oxidation of the 18-lupene to 3β,28-diacetoxy-18,19-secolupane was carried out by vigorous stirring at room temperature in a biphase solvent system H₂O-CCl₄ under catalytic conditions using a catalytic amount of RuO₂·xH₂O in combination with a NaIO₄ excess, which serves to generate RuO₄ from dioxide *in situ*. It was shown that ruthenium tetroxide oxidation of α-amino acids cyclic derivatives to corresponding lactams proceeds 5-7 times as fast in EtOAc-H₂O biphase solvent system than in H₂O-CCl₄ system. We have successfully applied this solvents system to RuO₄ oxidation of 18-lupene and 18,19-secolupane derivatives. By the oxidation of 3β,28-dihydroxy-18-lupene^{1,4} in these conditions and subsequent acetylation of the product we obtained 3β-acetoxy-28-nor-18,19-secolupan-18,19-dione. 5,6

By research into the RuO₄ oxidation of 3β-acetoxy-28-hydroxy-18-lupene⁷ 1, we have found out, that with an increase of reaction time, two more polar products were formed as traces (by TLC on Silufol) besides 3β-acetoxy-28-nor-18,19-secolupane-18,19-dione as a major product. We developed reaction conditions in which these compounds became major products, and identified them as tricyclic compounds 2a and 3a, on the base of MS, NMR ¹H and ¹³C spectra. All the new compounds described in this letter were characterized by spectral data: MS, IR, and ¹H NMR⁸⁻¹⁰ and ¹³C NMR (Table).

Method of RuO₄ oxidation 3β-acetoxy-28-hydroxy-18-lupene 1. Into vigorously stirred at 50°C mixture of 5 g NaIO₄, 200 ml water, 100 ml EtOAc, and 0.1 ml (~1.3 mmol) F₃CCOOH 223 mg (~1.3 mmol) RuO₂·xH₂O was added, and then solution of 1.910 g (~3.94 mmol) lupene 1 in 120 ml EtOAc was added by drops over a 5 h period. Then the reaction mixture was further stirred for 30 h at 50°C with further addition of 5 g NaIO₄ by small portions as the reaction proceeded. Then the EtOAc layer was separated, water phase was extracted by EtOAc, combined organic layers were treated by 1 ml *iso*-PrOH, filtered over the tight Shott filter, decolourized by stirring with Na₂S₂O₃ aqueous solution, separated, dried over Na₂SO₄, and evaporated *in vacuo* to dryness. The residue was separated by column chromatography on silica gel (eluent CHCl₃) and two major products were obtained: 1.15 g (2,217 mmol, 56.3%) of 3β-acetoxy-28-nor-17,18;18,19-disecolupane-18,19-dione-10-oic acid 2a⁸, and 0.29 g (0.665 mmol, 16.9%) 3β-acetoxy-19,20,21,22,28,29,30-heptanor-17,18-secolupan-17,18-dioic acid 3a⁹. Acids 2a, and 3a were treated by CH₂N₂ in ether and methyl ester 2b⁸ and dimethyl ester 3b⁹ were obtained, respectively.

$$2b \xrightarrow{\rho\text{-TsOH}} AcO \xrightarrow{\text{RuO}_4} 3c \xrightarrow{\text{CH}_2\text{N}_2} 3b$$

Reaction of compound 2b with p-TsOH in benzene. A mixture of 958 mg (1.798 mmol) ester 2b and 90 mg (0.473 mmol) p-TsOH·H₂O in 60 ml dry benzene was refluxed for 10 h with the removal of the water formed. The cooled reaction mixture was washed with the saturated aqueous NaHCO₃, dried over Na₂SO₄, evaporated in vacuo, and separated by column chromatography (silica gel, hexane-acetone, 15:1). Thus 327 mg (0.635 mmol, 35.3%) furan derivative 4¹⁰ were obtained.

RuO₄ oxidation of compound 4. A mixture of 807 mg (1.568 mmol) compound 4, 50 ml EtOAc, 30 ml water, and 12 mg (~0.072 mmol) RuO₂·xH₂O was stirred for 9 h with the addition of 2.3 g (10.5 mmol) NaIO₄ by small portions as the reaction proceeded. The EtOAc layer was separated, filtered, washed with brine containing Na₂S₂O₃, dried (Na₂SO₄), and evaporated. The residue, 694 mg, separated by column chromatography (silica gel, hexane-acetone, 2:1), afforded pure 18-methyl ester of 3β-acetoxy-19,20,21,22,28,29,30-heptanor-17,18-secolupan-17,18-dioic acid 3c⁹. Compound 3c treated by the CH₂N₂ in ether, afforded dimethyl ester 3b⁹, identical to the one obtained from acid 3a.

Table. The 13 C NMR (62.9 MHz, CDCl₃+TMS) chemical shifts of compounds 1-4, δ_{C}

С	1	2a	2b	3a	3b	3c	4
1	38.7	38.6	39.0	38.9	38.9	38.8	38.9
2	23.8	23.7	23.9	23.8	23.9	23.8	24.0
3	80.9	80.6	80.8	80.9	80.8	80.8	80.9
4	37.9a	37.8a	38.0a	38.0 ^a	38.0a	37.9a	38.0a
5	55.6	55.4	55.7	55.6	55.7	55.5	55.7
6	18.3	18.2	18.4	18.4	18.5	18.3	18.5
7	34.4	34.0	34.4	34.4	34.4	34.2	34.5
8	41.0	42.3	42.6	42.5b	42.4b	42.3b	42.4b
9	51.1	51.0	51.3	51.1	51.2	51.0	51.1
10	37.2a	37.3a	37.6a	37.6a	37.6a	37.5a	37.6a
11	21.6	20.2	20.5	20.4	20.5	20.3	20.5
12	28.4	26.2	26.5	26.3	26.4	26.2	26.5
13	40.7	48.1	48.5	48.4	48.5	48.3	48.6
14	43.7	42.3	42.6	42.6 ^b	42.6 ^b	42.5b	42.9b
15	28.4	29 .1	29.3	30.4c	30.8	30.4	34.5
16	32.8	33.7	33.9	30.9c	30.8	30.4	34.5
17	54.4	212.7	212.6	179.7	174.4	178.3	159.9
18	133.8	180.2	176.3	181.7	176.2	176.1	176.4
19	144.7	209.1	209.0	-	-	-	154.9
20	26.8	40.7	41.0	-	-	-	28.1
21	29.8	36.0	36.3	-	-	-	104.4
22	35.1	39.3	39.4	-	-	-	102.9
23	28.0	27.9	28.1	28.1	28.1	28.0	28.0
24	16.8	15.8	16.0	16.1	16.0	15.8	16.0
25	16.6	16.4	16.7	16.6	16.6	16.5	16.7
26	16.6	16.4	16.7	16.6	16.6	16.5	26.7
27	15.5	13.6	13.8	13.6	13.5	13.4	13.5
28	66.4	-	-	-	-	-	-
29	22.0	18.2	18.4	-	-	-	21.4
30	22.0	18.2	18.4	-	-	-	21.4
3-OO <u>C</u> CH ₃	170.6	170.5	170.6	170.8	170.6	170.6	170.6
3-OOC <u>C</u> H ₃	21.2	21.0	21.3	21.3	21.3	21.2	21.4
18-O <u>C</u> H ₃			51.3		51.3	51.3	51.1
17-O <u>C</u> H₃					51.5		

a-c: Assignments may be reversed.

References and Notes

- 1. Suokas, E.; Hase, T. Acta Chem. Scand. 1975, B29, 139-140.
- 2. Suokas, E.; Hase, T. Acta Chem. Scand. 1977, B31, 231-234.
- 3. Yoshifuji, S.; Tanaka, K.; Kawai, T.; Nitta, Y. Chem. Farm. Bull. 1985, 33, 5515-5521.
- 4. Denisenko, M. V.; Odinokova, L. E.; Uvarova, N. I. Khim. Prirod. Soedin. 1989, 655-664.
- Denisenko, M. V.; Odinokova, L. E.; Denisenko, V. A.; Uvarova, N. I. Khim. Prirod. Soedin. 1991, 430-431.
- Denisenko, M. V.; Odinokova, L. E.; Denisenko, V. A.; Uvarova, N. I. Zh. Organich. Khim. 1991, 27, 2174-2181.
- Odinokova, L. E.; Denisenko, M. V.; Denisenko, V. A.; Uvarova, N. I. Khim. Prirod. Soedin. 1992, 210-215.
- 8. **2a**: m. p. 141-145° C (hexane -acetone), $[\alpha]_D^{20} + 12.0^\circ$ (c 1, CHCl₃), MS, m/z: 518 (M⁺); IR (CHCl₃) v_{max} : 3500-3100, ~3000, 2950, 1715, 1702, 1686, 1674, 1643, 1624, 1558, 1542, 1530, 1484, 1462,1441, 1363, 1254, 1122 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ_H : 0.84 (3H, s, 24-H), 0.85 (3H, s, 23-H), 0.87 (3H, s, 25-H), 1.00 (3H, s, 26-H), 1.07 (3H, s, 27-H), 1.11 (6H, d, J=7.0 Hz, 29-H, 30-H), 2.05 (3H, s, Me of 3-OAc), 4.48 (1H, dd, J=10.4 Hz, J=5.2 Hz, 3 α -H), 1.1-1.9, 2.4-2.8 (the rests H). **2b**: m. p. 133-136° C (ethanol), $[\alpha]_D^{20} + 8.1^\circ$ (c 1, CHCl₃), MS, m/z: 532 (M⁺); IR (CHCl₃) v_{max} : 2990, 2940, 2860, 1702, 1362, 1252, 1159, 1021 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ_H : 0.84 (3H, s, 24-H), 0.85 (3H, s, 23-H), 0.86 (3H, s, 25-H), 0.99 (3H, s, 26-H), 1.02 (3H, s, 27-H), 1.11 (6H, d, J=6.8 Hz, 29-H, 30-H), 2.04 (3H, s, Me of 3-OAc), 3.64 (3H, s, 18-OMe), 4.48 (1H, dd, J=10.5 Hz, J=5.2 Hz, 3 α -H), 1.1-1.9, 2.05-2.8 (the rests H).
- 9. **3a**: m. p. 246-248°C (hexane-acetone) $[\alpha]_{0}^{2}$ -4.7° (c 0.42, CHCl₃), IR (CHCl₃) ν_{max} : 3500, 3400, ~2991, 2936, 2859, 1702, 1460,1444, 1411, 1389, 1367, 1246, 1202, 1142, 1021 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ_H: 0.84 (3H, s, 24-H), 0.86 (3H, s, 23-H), 0.87 (3H, s, 25-H), 1.00 (3H, s, 26-H), 1.09 (3H, s, 27-H), 2.05 (3H, s, Me of 3-OAc), 2.23 (2H, m), 2.65 (1H, dd, J=11.0 Hz, J=5.5 Hz, 13\beta-H), 4.48 (1H, dd, J=10.5 Hz, J=5.4 Hz, 3α -H), 1.1-2.0 (the rests H). **3b**: m. p. 140-144°C (ethanol, first m. p. ~70°), $[\alpha]_D^{20}$ +12.2° (c 1, CHCl₃), MS, m/z: 464 (M⁺) IR (CHCl₃) v_{max} : 2996, 2936, 2859, 1713, 1367, 1246, 1164, 1021 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ_{H} : 0.84 (3H, s, 24-H), 0.85 (3H, s, 23-H), 0.87 (3H, s, 25-H), 0.99 (3H, s, 26-H), 1.03 (3H, s, 27-H), 2.05 (3H, s, Me of 3-OAc), 2.62 (1H, dd, J=11.5 Hz, J=4.8 Hz, 13 β -H), 3.63 (3H, s, 17-OMe), 3.65 3H, s, 18-OMe), 4.48 (1H, dd, J=10.7 Hz, J=5.4 Hz, 3α -H), 1.1-2.3 (the rests H). 3c: m. p. 180-184°C (ethanol), $[\alpha]_D^{20}$ +10.6° (c 1, CHCl₃), MS, m/z: 450 (M⁺) IR (CHCl₃) v_{max} : 3660, 3000, 2996, 2936, 2865, 1713, 1367, 1252 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ_{H} : 0.84 (3H, s, 24-H), 0.86 (3H, s, 23-H), 0.87 (3H, s, 25-H), 1.00 (3H, s, 26-H), 1.05 (3H, s, 27-H), 2.05 (3H, s, Me of 3-OAc), 2.63 (1H, dd, J=11.2 Hz, J=4.8 Hz, 13 β -H), 3.64 (3H, s, 18-OMe), 4.48 (1H, dd, J=10.6Hz, J=5.0 Hz, 3α -H), 0.8-2.2 (the rests H).
- 10. 4: m. p. 96-99°C (ethanol), $[\alpha]_D^{20}$ +4.4° (c 1, CHCl₃), MS, m/z: 514 (M⁺) IR (CHCl₃) ν_{max} : 2950, 2930, 2870, 2850, 1722, 1600, 1466, 1448,1432, 1370, 1252, 1214, 1158 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ_{H} : 0.84 (3H, s, 24-H), 0.86 (3H, s, 23-H), 0.87 (3H, s, 25-H), 0.99 (3H, s, 26-H), 1.11 (3H, s, 27-H), 1,21 (6H, d, J=6.8 Hz, 29-H, 30-H), 2.04 (3H, s, Me of 3-OAc), 2.18 (1H, m, J=14 Hz, J=12 Hz, J=4 Hz), 2.44 (1H, m, J=14 Hz, J=12 Hz, J=5.5 Hz) 2.65 (1H, dd, J=12 Hz, J=4.5 Hz, 13 β -H), 2.87 (1H, m, J=6.8 Hz, 20-H), 3.63 (3H, s, 18-OMe), 4.48 (1H, dd, J=10.5 Hz, J=5.5 Hz, 3 α -H), 5.89 (2H, q, J=3.2 Hz, 21-H, 22-H), 1.2-1.9 (the rests H).